Year 3 Monitoring Report
 Final
 RES Randleman Group A Riparian Buffer Mitigation Project

DMS Project \# 100046 (Contract \# 7427)
DWR Project \# 2018-1330
RFP \#16-007242
Randolph County, North Carolina
Cape Fear River Basin
HUC 03030003

Prepared By:

()res

Resource Environmental Solutions, LLC
For Environmental Banc \& Exchange, LLC
3600 Glenwood Avenue, Suite 100
Raleigh, NC 27612
919-829-9909
February 2022

February 7, 2022
Kelly Phillips
NC DEQ Division of Mitigation Services
610 East Center Avenue
Suite 301
Mooresville, NC 28115

RE: RES Randleman Group A: MY3 Monitoring Report (NCDMS ID 100046)

Listed below are comments provided by DMS on January 25, 2022 regarding the RES Randleman Group A: Draft MY3 Monitoring Report and RES' responses.

1. Cover Sheet: Please add the RFP \# to the cover sheet and add the data collection date.

Done.
2. Section 1 Project Summary: Please verify the credit totals $(1,671,826.349)$, the values do not match DMS calculations $(1,671,826.484)$ possibly due to a rounding function. The credit difference is 0.135 . RES has verified that the credit totals are rounded correctly.
3. Section 5 Year 3 (MY3) Monitoring Performance; Approximately 600 bareroot trees were planted in plots with less than 600 stems per acre. Was the buffer also planted in areas outside the plots? Please describe the distribution of the supplemental planting areas and species in more detail and include a planting map if needed.
Supplemental planting occurred in lower stem density areas which include areas outside of vegetation plots. Supplemental planting occurred at all three sites (Pequod, Schmid, Sunbeam). The total number of supplemental bareroot trees planted are as follows; Pequod 285, Schmid 120, and Sunbeam 195. Supplemental bareroot tree species included white oak, willow oak, overcup oak, persimmon, buttonbush, and sugarberry. Locations of supplemental planting areas can be found on the CCPV map.
4. Section 5 Year 3 (MY3) Monitoring Performance: Please add discussion of the stream stability in sections where grading work was conducted for the project.
The upgraded crossing on Pequod is stable. The culvert removals and crossing upgrade on Schmid Creek are stable. Crossing improvement and brush-toe bank stabilization at Sunbeam are stable. Livestakes were added to the lower section of SC1 at Schmid Creek in 2020 and to the upper section of ZF1 at Sunbeam in 2021. Supplemental livestake species included black willow and silky dogwood. Both livestake areas were not proposed for stabilization at construction.

Digital Deliverable:

5. Please submit monitoring plot photos as JPEGS

Done.
6. Please submit the treated invasive species and supplemental planting areas features as polygons in the digital deliverable.
Done.

Table of Contents

1 PROJECT SUMMARY 1
1.1 Project Overview 1
1.2 Monitoring Protocol and Project Success Criteria 1
2 PEQUOD SITE 3
2.1 Project Location and Description 3
2.2 Project Components 3
2.3 Riparian Restoration and Enhancement Approach 4
2.4 Construction and As-Built Conditions 4
3 SCHMID CREEK SITE 5
3.1 Project Location and Description 5
3.2 Project Components 5
3.3 Riparian Restoration Approach 5
3.4 Construction and As-Built Conditions 6
4 SUNBEAM SITE 6
4.1 Project Location and Description 6
4.2 Project Components 7
4.3 Riparian Restoration, Enhancement, and Preservation Approach 7
4.4 Construction and As-Built Conditions 7
5 YEAR 3 (MY3) MONITORING PERFORMANCE 8
6 REFERENCES 8

Appendix A: Project Background Tables and Site Maps

Pequod

Table 1a: Pequod Mitigation Site Buffer Project Areas and Assets
Table 2a: Pequod Project Activity and Reporting History
Table 3a: Pequod Project Contacts Table
Table 4a: Project Background Information
Figure 1a: Pequod Site Location Map
Figure 2a: Pequod Current Conditions Plan View
Schmid Creek
Table 1b: Schmid Creek Mitigation Site Buffer Project Areas and Assets
Table 2b: Schmid Creek Project Activity and Reporting History
Table 3b: Schmid Creek Contacts Table
Table 4b: Schmid Creek Background Information
Figure 1b: Schmid Creek Site Location Map
Figure 2b: Schmid Creek Current Conditions Plan View
Sunbeam
Table 1c: Sunbeam Mitigation Site Buffer Project Areas and Assets
Table 2c: Sunbeam Project Activity and Reporting History
Table 3c: Project Contacts Table
Table 4c: Sunbeam Background Information
Figure 1c: Sunbeam Site Location Map
Figure 2c: Sunbeam Current Conditions Plan View

Appendix B: Vegetation Assessment Data

Pequod
Table 5a: Pequod Planted Species Summary
Table 6a: Pequod Vegetation Plot Mitigation Success Summary Table
Table 7a: Pequod Stem Count Total and Planted by Plot Species
Schmid Creek
Table 5b: Schmid Creek Planted Species Summary
Table 6b: Schmid Creek Vegetation Plot Mitigation Success Summary Table
Table 7b: Schmid Creek Stem Count Total and Planted by Plot Species
Sunbeam
Table 5c: Sunbeam Planted Species Summary
Table 6c: Sunbeam Vegetation Plot Mitigation Success Summary Table
Table 7c: Sunbeam Stem Count Total and Planted by Plot Species

Appendix C: Vegetation Monitoring Plot Photos

Pequod Vegetation Monitoring Plot Photos
Schmid Creek Vegetation Monitoring Plot Photos
Sunbeam Vegetation Monitoring Plot Photos

1 PROJECT SUMMARY

1.1 Project Overview

Environmental Banc \& Exchange, LLC (EBX), a wholly-owned subsidiary of Resource Environmental Solutions (RES), is pleased to provide this Monitoring Report for the RES Randleman Group A Riparian Buffer Mitigation Project (Project) as a full-delivery buffer mitigation project for the Division of Mitigation Services (DMS) (DMS \#100046). The RES Randleman Group A includes three sites: Pequod, Schmid Creek, and Sunbeam. These sites provide riparian buffer mitigation credits for unavoidable impacts due to development within the Randleman Lake Watershed of the Cape Fear River Basin, United States Geological Survey (USGS) 8-digit Hydrologic Unit Code (HUC - 03030003). The Mitigation Plan was approved in accordance with the Consolidated Buffer Mitigation Rule 15A NCAC 02B . 0295 and the Randleman Lake Water Supply Watershed Buffer Rule 15A NCAC 02B . 0250 .

The Project provides significant functional uplift to the watershed and assists DMS with achieving its mitigation goals in the Randleman Lake Watershed. The Project provides up to $1,671,826.349 \mathrm{ft}^{2}$ (38.38 acres) of riparian buffer mitigation assets. These are derived from restoration, enhancement, and preservation of riparian buffers in the Randleman Lake Watershed.

Site	Riparian Buffer Credits
Pequod	$812,085.766 \mathrm{ft}^{2}(18.64 \mathrm{ac})$
Schmid Creek	$273,737.545 \mathrm{ft}^{2}(6.28 \mathrm{ac})$
Sunbeam	$586,003.039 \mathrm{ft}^{2}(13.45 \mathrm{ac})$
Total	$\left.\mathbf{1 , 6 7 1 , 8 2 6 . 3 4 9} \mathrm{ft}^{\mathbf{2}} \mathbf{(3 8 . 3 8 ~ a c}\right)$

The conservation easement of the three sites combined totals approximately 50 acres. Primary land use within the watershed is largely residential, agricultural, commercial, and forested. The goal of the Project is to restore, enhance and preserve ecological function to the existing stream and riparian buffer by establishing appropriate plant communities while minimizing temporal and land disturbing impacts. Buffer improvements and the removal of livestock, helps to filter runoff from agricultural fields, thereby reducing nutrient and sediment loads to Project channels and the overall watershed. Restoration, enhancement, and preservation of the Randleman Lake riparian buffer (as defined in 15A NCAC 02B .0250) results in a reduction of the water quality stressors affecting the Project: livestock access and a lack of riparian buffer. Immediate water quality benefits and pollutant removal within the vicinity of the Project include the exclusion of livestock access to streams and reduction in nutrient loads from agricultural land-uses. This Project is consistent with the management strategy for maintaining and protecting riparian areas in the Randleman Lake watershed.

1.2 Monitoring Protocol and Project Success Criteria

Annual vegetation monitoring and visual assessments are to be conducted annually throughout the fiveyear monitoring period. Riparian buffer vegetation monitoring for all three sites is based on the "Carolina Vegetation Survey-Ecosystem Enhancement Program Protocol for Recording Vegetation: Level 1-2 Plot Sampling Only Version 4.2". Monitoring plots are to be installed a minimum of 100 meters squared in size and cover at least two percent of the planted mitigation area. These plots are to be randomly placed throughout the planted riparian buffer mitigation area and be representative of the riparian buffer restoration and enhancement areas where applicable (i.e. when enhancement credit is being generated from supplemental planting under 15A NCAC 02B $.0295(\mathrm{n})$). The following data is to be recorded for all trees in the plots: species, height, planting date (or volunteer), and grid location. All stems in plots are to be
flagged with flagging tape. The Pequod Site has 17 monitoring plots (16 designated to restoration, one designated to enhancement), the Schmid Creek Site has eight monitoring plots, and the Sunbeam Site has 12 monitoring plots.

Photos are to be taken from all photo points each monitoring year and provided in the annual reports. Visual inspections and photos are to be taken to ensure that enhancement areas are being maintained and compliant. The measure of vegetative success for the Project Sites is the survival of at least four native hardwood tree species, where no one species is greater than 50 percent of the established stems, established at a density of at least 260 planted trees per acre at the end of Year 5 . Native volunteer species may be included to meet the performance standards as determined by NC Division of Water Resources (DWR).

A visual assessment of the conservation easement is also to be performed each year to confirm:

- Fencing is in good condition throughout the site (if applicable);
- no cattle access within the conservation easement area;
- no encroachment has occurred;
- no invasive species in areas were invasive species were treated,
- diffuse flow is being maintained in the conservation easement areas; and
- there has not been any cutting, clearing, filling, grading, or similar activities that would negatively affect the functioning of the buffer.

Component/ Feature	Monitoring	Maintenance through project close-out
Vegetation	Annual vegetation monitoring	Vegetation shall be maintained to ensure the health and vigor of the targeted plant community. Routine vegetation maintenance and repair activities may include supplemental planting, pruning, mulching, and fertilizing.
Invasive and Nuisance Vegetation	Visual Assessment	Invasive and noxious species shall be monitored and treated so that none become dominant or alter the desired community structure of the site. Locations of invasive and nuisance vegetation will be mapped.
Site Boundary	Visual Assessment	Site boundaries shall be identified in the field to ensure clear distinction between the mitigation site and adjacent properties. Boundaries will be marked with signs identifying the property as a mitigation site and will include the name of the long-term steward and a contact number. Boundaries may be identified by fence, marker, bollard, post, tree-blazing, or other means as allowed by site conditions and/or conservation easement. Boundary markers disturbed, damaged, or destroyed will be repaired and/or replaced on an as-needed basis. Easement monitoring, and staking/signage maintenance will continue in perpetuity as a stewardship activity.
Road Crossing	Visual Assessment	Road crossings within the site may be maintained only as allowed by conservation easement or existing easement, deed restrictions, rights of way, or corridor agreements. Crossings in easement breaks are the responsibility of the landowner to maintain.
Livestock Fencing (if applicable)	Visual Assessment	Livestock fencing is placed outside the easement limits. Maintenance of fencing is the responsibility of the landowner.

2 PEQUOD SITE

2.1 Project Location and Description

The Pequod Site is within the Randleman Lake Watershed of the Cape Fear River Basin within the 8 -digit Hydrologic Unit Code (HUC) 03030003, 14-digit HUC 03030003010060 and DWR Subbasin Number 03-06-08.

The Pequod Site is located in Randolph County approximately five miles northwest of Archdale, North Carolina (Figure 1a). To access the Site head South on Main Street from I-85 and turn immediately left on Aldridge Road, after about a half mile turn right onto Huff Road, in about 0.4 miles the Site is on the left. The coordinates are $35.9107^{\circ} \mathrm{N}$ and $-79.9381^{\circ} \mathrm{W}$.

The easement, approximately 22.14 acres in size, is comprised of three sections, separated by two crossings, one of which is co-located with a gas easement. There is also an existing sanitary sewer easement within the Site area. The Pequod Site is composed of six stream channels: BF1, BF2, BF3, BF4, BF5, and BF6. BF1 flows directly into Muddy Creek approximately one mile downstream of the site. Reaches BF2, BF3, and BF5 drain to BF1. Reach BF6 drains to Reach BF2 and Reach BF4 drains to reach BF3. BF1 is a perennial unnamed tributary that is the primary feature onsite and has a drainage area of approximately 2,295 acres. The channel runs through pasture from the northern property boundary to the south before entering a culvert under Huff Road. BF1 is approximately 1,047 linear feet. A sanitary sewer easement runs parallel to this channel along the right bank. BF1 exhibits portions of bank instability and erosion from continued cattle access and the lack of a riparian buffer. BF2 is a perennial tributary that flows into BF1. This channel runs from the west to east for approximately 1,455 linear feet. BF2 has a drainage area of approximately 34 acres. BF3 is a perennial tributary that flows from northeast to southwest across the Site property and empties into BF1. A sanitary sewer easement runs parallel to this channel along the left bank. BF3 is approximately 1,463 linear feet and has a drainage area of approximately 65 acres. BF4 is an ephemeral tributary that runs through pasture from the northern property boundary to the south before draining to reach BF3. BF4 is approximately 233 linear feet and has a drainage area of approximately 11 acres. BF5 is a perennial tributary that originates at the southern property boundary before flowing north to its confluence with BF1. BF5 is approximately 328 linear feet and has a drainage area of approximately 10 acres. Reach BF6 is an intermittent stream that originates just downstream of a farm pond and drains to the north to its confluence with Reach BF2 just upstream of an existing gas easement. BF6 is approximately 418 linear feet and has a drainage area of approximately 11 acres. Stream identifications were verified by the DWR site visit on March 26, 2018.

2.2 Project Components

This Site generates approximately $767,201.823 \mathrm{ft}^{2}$ (17.61 acres) of riparian buffer restoration credits on existing non-forested pasture and $44,883.943 \mathrm{ft}^{2}$ (1.03 acres) of buffer enhancement credits. The riparian buffer restoration and enhancement adjacent to the ephemeral Reach B4 comprises 1.32 acres ($57,464 \mathrm{ft}^{2}$) which is in compliance with 15A NCAC 02B $.0295(\mathrm{o})(7)$ in that it is only 6.5 percent of the total area of buffer mitigation, which is less than 25 percent of the total area of buffer mitigation (20.45 total acres) that is allowed. The riparian buffer mitigation credits generated will service Randleman Lake buffer impacts within the USGS 8-digit HUC 03030003 of the Cape Fear River Basin. The total mitigation credits that the RES Randleman Group A - Pequod Site will generate are summarized in Table 1a.

2.3 Riparian Restoration and Enhancement Approach

Since this Site was mostly non-forested pasture, per 15A NCAC 02B . 0295 (n), buffer restoration activities occurred in the majority of the Site with a few patches of enhancement. Along the upstream left bank of BF3, the densely populated cluster of tree-of-heaven was removed, and the area was replanted with hardwoods. Large individual tree-of-heaven trees were cut down and smaller trees or saplings had herbicide applied to the foliage. A rigorous invasive management plan for these areas is to be followed during the following monitoring years. There is a fixed vegetation monitoring plot located in this area so that any resprouts can be identified and treated.

Some additional restoration activities were conducted along BF2 to address the observed trash, pipes and culverts found in the streams and a side gully with no flow that enters the stream. These activities included upgrading the crossing, removing an old box culvert, removing other debris within the buffer, and bank stabilization and grading where banks were compromised. Other restoration activities included the removal of the small non-subject pond above reach BF6. The pond was drained, filled, and planted.
A sanitary sewer easement runs parallel to reaches BF 3 and BF 1 and crosses reaches $\mathrm{BF} 1, \mathrm{BF} 2$, and BF 5 . The sewer easement along the left bank of BF3 is located outside of Zone 1 and in full compliance with 15A NCAC 02B . 0295 (1)(4)(A-C), and therefore was included in the buffer restoration activities. Pursuant to 15 A NCAC 02 B .0295 (1) (4), sewer easements in Zone 2 may be suitable for buffer mitigation credit if: the applicant or mitigation provider restores or enhances the forested buffer in Zone 1 adjacent to the sewer easement, the sewer easement is maintained in a condition that meets the vegetative requirements of the collection system permit, and diffuse flow is provided across the entire buffer width. As part of the restoration approach, all of these criteria were met. Due to bank instability and erosion there are sections of the sewer easement along the left bank of BF1 that are now within Zone 1, along with the section of the sewer easement that crosses BF1, BF2, and BF5. These 0.1 acres are not viable for buffer credit.

Enhancement occurred in the limited forested areas within the Site, found in small patches along BF1, BF3, BF4, and BF5, in accordance with the Consolidated Buffer Mitigation Rule 15A NCAC 02B . 0295 (n). These areas include supplemental planting. Enhancement also occurs in BF3 per 15A NCAC 02B $.0295(\mathrm{n})$ where there are currently clumps of densely populated early-successional (two to four year) sweetgum saplings combined with invasives. The enhancement activities included thinning the sweetgums to the extent necessary, treating the invasives and planting hardwood stems to add diversity to the riparian buffer. There was also a small area along BF1 that was considered enhancement after further site evaluation conducted by RES on December $4^{\text {th }}, 2018$. After further discussions with DWR, it was agreed upon that these areas could be used for enhancement under 15A NCAC 02B . 0295 (n) with supplemental planting.
Reach BF4 was classified as an ephemeral stream (per Buffer Viability) and, therefore, the restoration and enhancement of this channel do not comprise more than 25 percent of the total area of buffer mitigation per 15A NCAC 02B . 0295 (o)(7). In response to comments from DWR, RES conducted vegetation transect surveys on December 4th, 2018, to ensure that this area was indeed eligible for restoration credit. It was determined that the areas that were already enhancement should remain as enhancement, at the confluence of BF3 and BF4, and the other areas that were determined to be restoration should remain as restoration.

2.4 Construction and As-Built Conditions

Revegetation of the site included treating invasive species and planting native hardwood bare root trees. Prior to planting, RES prepped the site by spraying and ripping the easement as well as thinning sweetgum in enhancement areas. The planting of bare root trees occurred in April 2019. Deviations from the initial planting plan were due to bare root availability. A list of the planted species can be found in Table 5a. The other construction work included removing debris, an old culvert, and a farm pond as well as improving a crossing. This work was also completed in April 2019. The conservation easement is marked every 150-

200 feet with NCDEQ Stewardship Program signs attached to either fences or t-posts. There was no easement change between the final mitigation plan and as-built, however there was a change in credits. This change was a result of an error in the buffer zones submitted with the mitigation plan. The result was an increase in $750 \mathrm{ft}^{2}$ (0.02 ac).

3 SCHMID CREEK SITE

3.1 Project Location and Description

The Schmid Creek Site is located in the Randleman Lake Watershed of the Cape Fear River Basin within the 8 -digit Hydrologic Unit Code (HUC) 03030003, 14-digit HUC 03030003010060 and DWR Subbasin Number 03-06-08.
The Site is located in Randolph County approximately five miles northwest of Randleman, North Carolina (Figure 1b). To access the Site head West on Cedar Square Road from I-74 and turn right on Davis Country Road, after about a mile turn right onto Gilbert Davis Drive, in about 0.4 miles the Site is on the left. The coordinates of the Site are $35.8726^{\circ} \mathrm{N}$ and - $79.8726^{\circ} \mathrm{W}$.

The conservation easement totals approximately 9.99 acres. The majority of the Site was grazed, nonforested pasture. The riparian buffer was devoid of trees or shrubs and cattle were allowed access within the existing channels
The easement is comprised of two sections, separated by one farm access crossing. The Schmid Creek Site is comprised of one stream channel, SC1, which begins downstream of a pond and then flows from northeast to the southwest eventually draining directly into Randleman Lake approximately 1,500 feet downstream of the site. SC 1 is an intermittent unnamed tributary that is the primary drainage feature onsite and has a drainage area of approximately 57 acres. This channel begins downstream of an existing culvert at the eastern property boundary and runs through active pasture before passing through two more culverts on the property. SC1 is approximately 1,022 linear feet. This channel is mostly stable throughout, however, it does exhibit some areas of active erosion from cattle access. There is one linear wetland onsite that drains directly to SC1. DWR Stream Identification Forms were completed and verified by DWR during a site visit on April 12, 2017.

3.2 Project Components

This Site generates approximately $273,737.545 \mathrm{ft}^{2}$ (6.28 acres) of riparian buffer restoration credits on existing non-forested pasture. The riparian buffer mitigation credits generated will service Randleman Lake buffer impacts within the USGS 8-digit HUC 0303003 of the Cape Fear River Basin. The total mitigation credits that the RES Randleman Group A - Schmid Creek Mitigation Site generates are summarized in Table 1b.

3.3 Riparian Restoration Approach

Since this Site was all non-forested pasture, per 15A NCAC 02B . 0295 (n), buffer restoration activities included planting throughout the entire Site. Some additional restoration activities included the removal of debris found within the Site and updating the farm crossing culvert. Specifically, the debris removal included the removal of a drain tile and culvert at the most upstream section of the Reach SC1 and removal of a culvert and earthen berm at the downstream section of Reach SC1. The crossing was improved with properly sized and embedded corrugated pipe, and embankment stabilization to facilitate future landowner access to both sides of the property. These areas were stabilized with coir matting, permanent and temporary seeding, and live stakes after culvert removal.

3.4 Construction and As-Built Conditions

Revegetation of the site included planting native hardwood bare root trees. Prior to planting, RES prepped the site by spraying and ripping the easement. The planting of bare root trees occurred in April 2019. Deviations from the initial planting plan were due to bare root availability. A list of the planted species can be found in Table 5b. The other construction work included removing debris (culverts, drain tile, and earthen berm) as well as improving a crossing. This work was also completed in April 2019. The conservation easement is marked every 150-200 feet with NCDEQ Stewardship Program signs attached to either fences or t-posts. There was no easement or credit change between the final mitigation plan and asbuilt.

4 SUNBEAM SITE

4.1 Project Location and Description

The Sunbeam Site is within the Randleman Lake Watershed of the Cape Fear River Basin within the 8digit Hydrologic Unit Code (HUC) 03030003, 14-digit HUC 03030003010060 and DWR Subbasin Number 03-06-08.

The Site is located in Randolph County approximately six miles southeast of Archdale, North Carolina. The easement is located on both sides of Interstate Highway 74. To access the Site from Interstate Highway 85 travel south on US 311 (toward Asheboro), then take exit 79 for Cedar Square Road, then turn right. Travel on Cedar Square Road for approximately a quarter of a mile, then turn left onto SR 1009. Travel on SR 1009 for approximately one and a quarter mile, and the Site will be on the right. The coordinates are $35.8631^{\circ} \mathrm{N}$ and -79.8911 ${ }^{\circ} \mathrm{W}$.

The Sunbeam Site easement, approximately 18.4 acres in size, is made up of four sections, separated by two farm access crossings and a highway, and is comprised of four stream reaches: ZF1, ZF2, ZF3, and ZF4 (Figure 1c). ZF1 flows directly into Randleman Lake approximately 5,500 linear feet downstream of the Site. Both ZF2 and ZF3 flow into ZF1 near the downstream end of the Site. ZF1 is a perennial unnamed tributary that is the primary drainage feature onsite and has a drainage area of approximately 540 acres. This channel runs through pasture from the western property corner to the east side of the Site before entering a culvert under I-74. ZF1 is approximately 1,614 linear feet. This channel is mostly stable throughout, however, it did exhibit portions of vertical banks and erosion from cattle. There is also a ditch that discharges into ZF1. The ditch was graded out and a diffuse flow structure was built on the easement boundary to ensure that diffuse flow of runoff is maintained within the riparian buffer. ZF2 is an intermittent to perennial tributary that begins downstream of a farm pond, roughly 260 linear feet off the Site property and then flows into ZF1. This channel runs from the south to north for approximately 1,530 linear feet. ZF2 has a drainage area of approximately 55 acres. This stream channel is stable and exhibits bedrock features at the downstream end. The stream channel was bound by active cattle pasture on the right bank and agriculture hay fields on the left bank. There is currently an existing fence line along the stream channel of ZF2 to prevent cattle from crossing into the left bank riparian buffer. ZF3 is an intermittent to perennial tributary that flows from northwest to southeast across the Site property and empties into ZF1. ZF3 has a drainage area of approximately 98 acres. ZF3 exhibits multiple segments of bedrock providing grade control and streambed stability. This stable tributary lies within a valley bottom and is bound by active cattle pasture. The channel is approximately 1,224 linear feet. ZF4 is an intermittent tributary located on the Site east of Interstate 74. This channel runs from north to south for approximately 529 linear feet before draining to ZF1 downstream of the Site. The drainage area is approximately 16 acres. This stable channel is bound by a mature forest on the left bank and hay field on the right. Stream identifications were verified by the DWR site visit on March 26, 2018.

4.2 Project Components

This Site generates approximately $577,098.433 \mathrm{ft}^{2}(13.25$ acres $)$ of riparian buffer restoration credits on existing non-forested pasture, $3,311.971 \mathrm{ft}^{2}(0.08$ acres) of buffer enhancement credits via cattle exclusion, and $5,592.634 \mathrm{ft}^{2}$ (0.13 acres) of riparian buffer preservation credits on subject streams. Due to the removal of a small section of the easement, a very small piece of the buffer along ZF1 now has a buffer that is less than 30 feet but greater than 20 feet and therefore only receives 75 percent of the credit in that area. The riparian buffer mitigation credits generated, service Randleman Lake buffer impacts within the USGS 8digit HUC 03030003 of the Cape Fear River Basin. The total mitigation credits that the RES Randleman Group A - Sunbeam Site generates are summarized in Table 1c.

4.3 Riparian Restoration, Enhancement, and Preservation Approach

Since a majority of the Sunbeam Site was non-forested actively grazed pasture, per 15A NCAC 02B . 0295 (n), buffer restoration activities occurred throughout the Site. Some additional restoration activities included minor bank stabilization and grading where needed based on compromised banks and where erosional rills and gullies were observed. Minimal grading and benching was performed to stabilize the confluence of ZF1 and ZF3, and to provide spot stabilization along ZF1. Stabilizing these areas provide functional uplift to the stream system by stopping the mass bank wasting that is currently a problem and by reducing instream sediment loads. In order to maintain diffuse flow in the riparian buffer, the ditch that drains to ZF1 was graded out and a diffuse flow structure was built along the boundary of the easement. Another restoration activity was the upgrading of the existing crossing This crossing is necessary for property access and is fenced to prevent cattle access. The crossing was constructed such that farm equipment has access and to prevent future degradation. These areas were stabilized with coir matting, permanent and temporary seeding, and live stakes after culvert removal.
Enhancement occurred in the very limited forested areas within the Site, found in small patches along ZF1, where grazing occurred adjacent to the stream in accordance with the Consolidated Buffer Mitigation Rule 15A NCAC 02B . 0295 (o)(6). All livestock were removed from the easement and the fence was installed to exclude access to riparian areas and their associated streams.
Buffer preservation was performed along Reach ZF4 in accordance with the Consolidated Buffer Mitigation Rule 15A NCAC 02B . 0295 (o)(5). The current land use in this area is mature hardwood in the forested area on the left bank of ZF4. Preservation activities consist of permanently protecting the buffer from cutting, clearing, filling, grading, and similar activities that would affect the functioning of the buffer through a conservation easement that has clearly visible easement markers and signs.

4.4 Construction and As-Built Conditions

Revegetation of the site included planting native hardwood bare root trees. Prior to planting, RES prepped the site by spraying and ripping the easement. The planting of bare root trees occurred in April 2019. Deviations from the initial planting plan were due to bare root availability. A list of the planted species can be found in Table 5c. The other construction work included bank stabilization and spot treatments on ZF1 and improving the crossing on ZF1. The crossing on ZF1 was originally planned to be a culvert crossing but due to the bedrock in the proposed area, the crossing was installed as a ford. Additionally, a rill entering the easement at the top of ZF1 was graded and planted. This work was also completed in April 2019. A Buffer Impacts Authorization was approved in January 2019 for the temporary impacts in Zone 1 from the bank stabilization work on ZF1 (As-Built Report). The conservation easement is marked every 150-200 feet with NCDEQ Stewardship Program signs attached to either fences or t-posts. Fences were installed in the western portion of the site where livestock is present. There was no easement or credit change between the final mitigation plan and as-built.

5 YEAR 3 (MY3) MONITORING PERFORMANCE

The RES Randleman Group A Year 3 Monitoring activities were completed in October 2021. All Year 3 Monitoring data is present below and in the appendices. The Site is on track to meeting interim success criteria.

Monitoring of the 37 permanent vegetation plots was completed during October 2021. Vegetation tables are in Appendix B and associated photos are in Appendix C. At Pequod, 17 of 17 plots are exceeding the interim success criteria of 320 planted stems per acre. Planted stem densities ranged from 364 to 971 planted stems per acre with a mean of 650 planted stems per acre across all plots. The average planted stem height was 4.2 feet. At Schmid Creek, 8 of 8 plots are exceeding the interim success criteria and the planted stem densities range from 445 to 1,133 with a mean of 784 stems per acre across all plots. The average planted stem height was 2.8 feet. And 12 of 12 plots at Sunbeam are exceeding the interim success criteria and the planted stem densities range from 445 to 850 with a mean of 668 stems per acre across all plots. The average planted stem height was 5.6 feet. A total of 13 tree species were documented within the plots. Volunteer species were more abundant across the sites in MY3.

Visual assessment of vegetation outside of the monitoring plots indicates that the herbaceous vegetation is becoming well established throughout all three Sites. Small, localized areas of Chinese privet, tree of heaven, and princess tree were treated at Schmid Creek in October 2021. Small, localized areas of Chinese privet and Bradford pear were treated at Pequod in November 2021. Invasive treatment areas in the CCPV maps represent the total area in which isolated treatments were applied. Invasive treatments will continue as needed throughout the remainder of the monitoring period. Additionally, minor supplemental planting was performed in and around plots that demonstrated less than 600 stems per acre in MY2. Supplemental bareroot tree species included white oak, willow oak, overcup oak, persimmon, button bush, and sugarberry. This supplemental planting was performed in January 2021 and consisted of approximately 600 bareroot trees total across the three sites. Supplemental planting and invasive treatment areas are provided in the CCPV maps.

The upgraded crossing on Pequod is stable. The culvert removals and crossing upgrade on Schmid Creek are stable. Crossing improvement and brush-toe bank stabilization at Sunbeam are stable. Livestakes were added to the lower section of SC1 at Schmid Creek in 2020 and to the upper section of ZF1 at Sunbeam in 2021. Both areas were not proposed for stabilization at construction.

6 REFERENCES

Lee Michael T., Peet Robert K., Roberts Steven D., and Wentworth Thomas R., 2008. CVS-EEP Protocol for Recording Vegetation Level. Version 4.2

NC Environmental Management Commission. 2014. Rule 15A NCAC 02B. 0295 - Mitigation Program Requirements for the Protection and Maintenance of Riparian Buffers.

Resource Environmental Solutions, LLC (2019). Randleman Group A - As-Built Baseline Monitoring Report.

Resource Environmental Solutions, LLC (2019). Randleman Group A - Final Mitigation Plan.
Schafale, M.P. 2012. Classification of the Natural Communities of North Carolina, Fourth Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, NCDENR, Raleigh, NC.

Appendix A

Project Background Tables and Site Maps

Table 1a. Pequod Mitigation Site Buffer Project Areas and Assets

Location	Jurisdictional Streams	Restoration Type	Reach ID/Component	Buffer Width (ft)	Creditable Area (acreage)	Creditable Area (sf)*	$\begin{aligned} & \hline \text { Initial } \\ & \text { Credit } \\ & \text { Ratio } \\ & (x: 1) \\ & \hline \end{aligned}$	$\left\|\begin{array}{l} \% \text { Full } \\ \text { Credit } \end{array}\right\|$	Final Credit Ratio (x:1)	Riparian Buffer Credits (BMU)	Riparian Buffer Credits (acreage)	Convertible to Nutrient Offset (Yes or No)	Nutrient Offset: N (lbs)	Nutrient Offset: P (lbs)
Rural	Subject	Restoration	BF1	20-29	0.00	0	1	75\%	1.33333	0.000	0.00	No	0.000	0.000
				30-100	3.35	145,905		100\%	1.00000	145,904.931	3.35	No	0.000	0.000
				101-200	0.24	10,237		33\%	3.00000	3,378.107	0.08	No	0.000	0.000
		Enhancement		20-29	0.00			75\%	2.66667	0.000	0.00	No	0.000	0.000
				30-100	0.05	2,032	2	100\%	2.00000	1,016.084	0.02	No	0.000	0.000
				101-200	0.00	0		33\%	6.00000	0.000	0.00	No	0.000	0.000
Rural	Subject		BF2	$20-29$	0.00	0	1	75\%	1.33333	0.000	0.00	No	0.000	0.000
		Restoration		30-100	5.49	239,201		100\%	1.00000	239,200.774	5.49	No	0.000	0.000
				101-200	0.18	7,966		33\%	3.00000	2,628.839	0.06	No	0.000	0.000
		Enhancement		20-29	0.00	\bigcirc	2	75\%	2.66667	0.000	0.00	No	0.000	0.000
				30-100	0.00	0		100\%	2.00000	0.000	0.00	No	0.000	0.000
Rural	Subject		BF3	101-200	0.00	0	1	73\%	6.00000	0.000	0.00 0.00	No	0.000 0.000	0.000
		Restoration		30-100	4.88	212,393		100\%	1.00000	212,392.571	4.88	No	0.000	0.000
				101-200	0.99	43,258		33\%	3.00000	14,275.279	0.33	No	0.000	0.000
		Enhancement		20-29	0.00		2	75\%	2.66667	0.000	0.00	No	0.000	0.000
				30-100	0.64	27,860		100\%	2.00000	13,930.039	0.32	No	0.000	0.000
				101-200	0.00			33\%	6.00000	0.000	0.00	No	0.000	0.000
Rural	Subject		BF5	20-29	0.00		1	75\%	1.33333	0.000	0.00	No	0.000	0.000
		Restoration		30-100	1.11	48,185		100\%	1.00000	48,185.441	1.11	No	0.000	0.000
				101-200	0.04	1,850		33\%	3.00000	610.359	0.01	No	0.000	0.000
		Enhancement		20-29	0.00	${ }^{0}$	2	75\%	2.66667	0.000	0.00	No	0.000	0.000
				101-200	0.00	0		33\%	6.00000	0.000	0.00	No	0.000	0.000
Rural	Subject		BF6	20-29	0.00	0	1	75\%	1.33333	0.000	0.00	No	0.000	0.000
		Restoration		30-100	1.85	80,603		100\%	1.00000	80,602.565	1.85	No	0.000	0.000
				101-200	0.24	10,290		33\%	3.00000	3,395.723	0.08	No	0.000	0.000
		Enhancement		20-29	0.00	0	2	75\%	2.66667	0.000	0.00	No	0.000	0.000
				30-100	0.00	0		100\%	2.00000	0.000	0.00	No	0.000	0.000
				101-200	0.00	,		33\%	6.00000	0.000	0.00	No	0.000	0.000
				SUBTOTALS	19.13	833,142				767,201.823	17.61		0.000	0.000

ELIGIBLE PRESERVATION AREA					Creditable Area (sf)*	$\begin{aligned} & \hline \text { Initial } \\ & \text { Credit } \\ & \text { Ratio } \\ & \text { (x:1) } \\ & \hline \end{aligned}$	\% full Credit	Final Credit Ratio (x:1)	$\begin{array}{\|c} \text { Riparian } \\ \text { Buffer Credits } \\ \text { (BMU) } \\ \hline \end{array}$	$\begin{array}{\|c} \text { Riparian } \\ \text { Buffer Credits } \\ \text { (acreage) } \\ \hline \end{array}$
Location	Jurisdictional Streams	Restoration Type	Reach ID/Component	Buffer Width (ft)						
Rural	Subject	Preservation		20-29		10	75\%	13.33333	0.000	0.00
				30-100			100\%	10.00000	0.000	0.00
				101-200			33\%	30.00000	0.000	0.00
	Nonsubject			20-29		5	75\%	6.66667	0.000	0.00
				30-100			100\%	5.00000	0.000	0.00
				101-200			33\%	15.00000	0.000	0.00
				SUBTOTALS	0				0.000	0.000

*Area eligible for preservation may be no more than 25% of total area, where total area is back-calculated with the equation $R+E / 0.75$.
All buffers eligible for credit must be at minimum 20^{\prime} wide

Regulatory direction for Riparian Buffer in this table follows NCAC rule 15A NCAC 02B . 0295 , effective November 1,2015
Regulatory direction for Nutrient Offset in this table follows Nutrient Offsets Payments Rule 15A NCAC 02B. 0240, amended effective September 1, 2010 and
$\mathrm{N} . \mathrm{O}$. calculation based on effectiveness in 30 years, with $146.40 \mathrm{lb} / \mathrm{ac} \mathrm{P}$; and $2,273.02 \mathrm{lb} / \mathrm{ac} \mathrm{N}$. The N credit ratio used is 19.16325 sf per pound. The P credit ratio used is 297.54098 sf per pound.

Table 2a. Project Activity and Reporting History Pequod Site

Elapsed Time Since grading complete: NA Elapsed Time Since planting complete: 2 year 7 months Number of reporting Years ${ }^{1}$: 3

Activity or Deliverable	Data Collection Complete	Completion or Delivery
Restoration Plan	NA	Mar-19
Final Design - Construction Plans	NA	NA
Stream Construction	NA	NA
Site Planting	NA	Apr-19
As-built (Year 0 Monitoring - baseline)	Apr-19	May-19
Year 1 Monitoring	Oct-19	Nov-19
Invasive Species Treatment	NA	Aug-20
Year 2 Monitoring	Oct-20	Nov-20
Year 3 Monitoring	Oct-21	Oct-21
Year 4 Monitoring		
Year 5 Monitoring		

$1=$ The number of reports or data points produced excluding the baseline

Table 3a. Project Contacts Table Pequod Site	
Planting Contractor	H\&J Forestry
Planting contractor POC	Matt Hitch
Nursery Stock Suppliers	Claridge Nursery 1-(888) 628-7337
Monitoring Performers	RES / 3600 Glenwood Ave, Suite 100, Raleigh, NC 27612
Vegetation Monitoring POC	

Table 4a. Project Background Information	
Project Name	Pequod
County	Randolph
Project Area (acres)	22.14
Project Coordinates (latitude and longitude)	Latitude: 35.9107 N Longitude: -79.9381 W
Planted Acreage (Acres of Woody Stems Planted)	19.6
Project Watershed Summary Information	
Physiographic Province	Southern Outer Piedmont
River Basin	Cape Fear
USGS Hydrologic Unit 8-digit 03030003	USGS Hydrologic Unit 14-digit $\quad 03030003010060$
DWR Sub-basin	03-06-08
Project Drainage Area (Acres)	2,295
CGIA Land Use Classification	Forest; Agricultural; Residential

Table 1b. Schmid Creek Mitigation Site Buffer Project Areas and Assets

			ELIGIBLE PRESERVATION AREA			134,935					
Location	Jurisdictional Streams	Restoration Type	Reach ID/Component	Buffer Width (ft)		Creditable Area (sf)*	Initial Credit Ratio (x:1)	\% Full Credit	Final Credit Ratio (x:1)	Riparian Buffer Credits (BMU)	Riparian Buffer Credits (acres)
Rural	Subject	Preservation		20-29		0	10	75\%	13.33333	0.000	0.00
				30-100		0		100\%	10.00000	0.000	0.00
				101-200		0		33\%	30.00000	0.000	0.00
	Nonsubject			20-29		0	5	75\%	6.66667	0.000	0.00
				30-100		0		100\%	5.00000	0.000	0.00
				101-200		0		33\%	15.00000	0.000	0.00
Urban	Subject or Nonsubject			20-29		0	3	75\%	4.00000	0.000	0.00
				30-100		0		100\%	3.00000	0.000	0.00
				101-200		0		33\%	9.00000	0.000	0.00
				SUBTOTALS		0				0.000	0.00
				TOTALS	9.29	404,804				273,737.545	6.28

*Area eligible for preservation may be no more than 25% of total area, where total area is back-calculated with the equation $R+E / 0.75$.
*All buffers eligible for credit must be at minimum 20' wide
*When preservation areas exceed the total eligible preservation area, select the areas with the best credit ratios as the creditable areas.

FILLIBLE CELLS, leave blank if N/A

Regulatory direction for Riparian Buffer in this table follows NCAC rule 15A NCAC 02B .0295, effective November 1, 2015
Regulatory direction for Nutrient Offset in this table follows Nutrient Offsets Payments Rule 15A NCAC 02B. 0240, amended effective September 1, 2010 and
DWR - 1998. Methodology and Calculations for determining Nutrient Reductions associated with Riparian Buffer Establishment.
N.O. calculation based on effectiveness in 30 years, with $146.40 \mathrm{lb} / \mathrm{ac} P$; and $2,273.02 \mathrm{lb} / \mathrm{ac} \mathrm{N}$. The N credit ratio used is 19.16325 sf per pound. The P credit ratio used is 297.54098 sf per pound.

Table 2b. Project Activity and Reporting History Schmid Creek Site

Elapsed Time Since grading complete: NA Elapsed Time Since planting complete: 2 year 7 months Number of reporting Years ${ }^{1}$: 3

Activity or Deliverable	Data Collection Complete	Completion or Delivery
Restoration Plan	NA	Mar-19
Final Design - Construction Plans	NA	NA
Stream Construction	NA	NA
Site Planting	NA	Apr-19
As-built (Year 0 Monitoring - baseline)	Apr-19	May-19
Year 1 Monitoring	Oct-19	Jan-20
Year 2 Monitoring	Oct-20	Oct-20
Year 3 Monitoring	Oct-21	Oct-21
Year 4 Monitoring		
Year 5 Monitoring		

$1=$ The number of reports or data points produced excluding the baseline

Table 3b. Project Contacts Table Schmid Creek Mitigation Site	
Planting Contractor	H\&J Forestry
Planting contractor POC	Matt Hitch
Nursery Stock Suppliers	Arborgen / 2011 Broadbank Court, Ridgeville, SC 29472
Monitoring Performers	RES / 3600 Glenwood Ave, Suite 100, Raleigh, NC 27612
Vegetation Monitoring POC	Ryan Medric (919) 741-6268

Table 4b. Project Background Information	
Project Name	Schmid Creek
County	Randolph
Project Area (acres)	9.99
Project Coordinates (latitude and longitude)	Latitude: 35.8726 N Longitude: -79.8726 W
Planted Acreage (Acres of Woody Stems Planted)	9.3
Project Watershed Summary Information	
Physiographic Province	Southern Outer Piedmont
River Basin	Cape Fear
USGS Hydrologic Unit 8-digit 03030003	USGS Hydrologic Unit 14-digit $\quad 03030003010060$
DWR Sub-basin	03-06-08
Project Drainage Area (Acres)	57
CGIA Land Use Classification	Forest; Agricultural; Residential

\square Conservation Easement Vegetation Plot (>320 stems/acre)
\square Invasive Treatment Area R888 Supplemental Planting Area Buffer Mitigation

Restoration, 0-100
Restoration, 101-200
Top of Bank

$\underset{\text { Feet }}{100}$

Figure 2b - Current Conditions Plan View
RES Randleman Group A -
Schmid Creek Mitigation Site (MY3 2021)

Date: $2 / 4 / 2022$
Drawn by: RTM
Checked by: BPB
1 inch $=200$ feet

Table 1c. Sunbeam Mitigation Site Buffer Project Areas and Assets

RIPARIAN BUFFER (15A NCAC 02B.0295)													If Converted to Nutrient Offset	
Location	Jurisdictional Streams	Restoration Type	Reach ID / Component	Buffer Width (ft)	Creditable Area (acreage)	Creditable Area (sf)*	Initial Credit Ratio (x:1)	\% Full Credit	Final Credit Ratio (x:1)	Riparian Buffer Credits (BMU)	Riparian Buffer Credits (acreage)	Convertible to Nutrient Offset (Yes or No)	Nutrient Offset: N (lbs)	Nutrient Offset: P (lbs)
Rural	Subject	Restoration	ZF1	20-29	0.06	2,527	1	75\%	1.33333	1,894.930	0.04	No	0.000	0.000
				30-100	4.16	181,155		100\%	1.00000	181,155.058	4.16	No	0.000	0.000
				101-200	0.24	10,467		33\%	3.00000	3,453.974	0.08	No	0.000	0.000
		Enhancement		20-29	0.00	0	2	75\%	2.66667	0.000	0.00	No	0.000	0.000
				30-100	0.15	6,624		100\%	2.00000	3,311.971	0.08	No	0.000	0.000
				101-200	0.00	0		33\%	6.00000	0.000	0.00	No	0.000	0.000
		Restoration	ZF2	20-29	0.00	0	1	75\%	1.33333	0.000	0.00	No	0.000	0.000
				30-100	2.20	95,766		100\%	1.00000	95,766.014	2.20	No	0.000	0.000
				101-200	0.00	0		33\%	3.00000	0.000	0.00	No	0.000	0.000
			ZF3	20-29	0.00	0		75\%	1.33333	0.000	0.00	No	0.000	0.000
				30-100	4.16	181,232		100\%	1.00000	181,231.846	4.16	No	0.000	0.000
				101-200	0.20	8,617		33\%	3.00000	2,843.463	0.07	No	0.000	0.000
			ZF4	20-29	0.00	0		75\%	1.33333	0.000	0.00	No	0.000	0.000
				30-100	1.93	83,983		100\%	1.00000	83,983.325	1.93	No	0.000	0.000
				101-200	1.86	81,121		33\%	3.00000	26,769.823	0.61	No	0.000	0.000
			SUBTOTALS		14.96	651,491				580,410.404	13.32		0.000	0.000

			ELIGIBLE PRESERVATION AREA		4.99 $\mathbf{2 1 7 , 1 6 4}$						
Location	Jurisdictional Streams	Restoration Type	Reach ID / Component	Buffer Width (ft)	Creditable Area (acreage)	Creditable Area (sf)*	Initial Credit Ratio ($\mathrm{x}: 1$)	\% Full Credit	Final Credit Ratio ($\mathrm{x}: 1$)	Riparian Buffer Credits (BMU)	Riparian Buffer Credits (acreage)
				20-29	0.00	0		75\%	13.33333	0.000	0.00
Rural	Subject	Preservation	ZF4	30-100	1.01	44,063	10	100\%	10.00000	4406.342	0.10
				101-200	0.83	35,948		33\%	30.00000	1186.293	0.03
				SUBTOTALS	1.84	80,012				5,592.634	0.13
				TOTALS	16.79	731,502				586,003.039	13.45

*Area eligible for preservation may be no more than 25% of total area, where total area is back-calculated with the equation $R+E / 0.75$.
*All buffers eligible for credit must be at minimum 20' wide
*When preservation areas exceed the total eligible preservation area, select the areas with the best credit ratios as the creditable areas.

FILLIBLE CELLS, leave blank if N/A

Regulatory direction for Riparian Buffer in this table follows NCAC rule 15A NCAC 02B .0295, effective November 1, 2015
Regulatory direction for Nutrient Offset in this table follows Nutrient Offsets Payments Rule 15A NCAC 02B. 0240, amended effective September 1, 2010 and
DWR - 1998. Methodology and Calculations for determining Nutrient Reductions associated with Riparian Buffer Establishment.
N.O. calculation based on effectiveness in 30 years, with $146.40 \mathrm{lb} / \mathrm{ac} P$; and $2,273.02 \mathrm{lb} / \mathrm{ac} \mathrm{N}$. The N credit ratio used is 19.16325 sf per pound. The P credit ratio used is 297.54098 sf per pound.

Table 2c. Project Activity and Reporting History Sunbeam Site

Elapsed Time Since grading complete: NA Elapsed Time Since planting complete: 2 year 7 months Number of reporting Years ${ }^{1}$: 3

Activity or Deliverable	Data Collection Complete	Completion or Delivery
Restoration Plan	NA	Mar-19
Final Design - Construction Plans	NA	NA
Stream Construction	NA	NA
Site Planting	NA	Apr-19
As-built (Year 0 Monitoring - baseline)	Apr-19	May-19
Year 1 Monitoring	Oct-19	Jan-20
Invasive Species Treatment	NA	Aug-20
Year 2 Monitoring	Oct-20	Nov-20
Year 3 Monitoring	Oct-21	Oct-21
Year 4 Monitoring		
Year 5 Monitoring		

$1=$ The number of reports or data points produced excluding the baseline

Table 3c. Project Contacts Table Sunbeam Site	
Planting Contractor	H\&J Forestry
Planting contractor POC	Matt Hitch
Nursery Stock Suppliers	Arborgen / 2011 Broadbank Court, Ridgeville, SC 29472
Monitoring Performers	RES / 3600 Glenwood Ave, Suite 100, Raleigh, NC 27612
Vegetation Monitoring POC	Ryan Medric (919) 741-6268

Table 4c. Project Background Information	
Project Name	Sunbeam
County	Randolph
Project Area (acres)	18.46
Project Coordinates (latitude and longitude)	Latitude: 35.8726 N Longitude: -79.8726 W
Planted Acreage (Acres of Woody Stems Planted)	14.8
Project Watershed Summary Information	
Physiographic Province	Southern Outer Piedmont
River Basin	Cape Fear
USGS Hydrologic Unit 8-digit 03030003	USGS Hydrologic Unit 14-digit $\quad 03030003010060$
DWR Sub-basin	03-06-08
Project Drainage Area (Acres)	540
CGIA Land Use Classification	Forest; Agricultural; Residential

Appendix B

Vegetation Assessment Data

Table 5a. Pequod Planted Species Summary

Common Name	Scientific Name	Total Ste ms Planted d
Sycamore	Platanus occidentalis	3,800
Water Oak	Quercus nigra	3,800
Tuliptree	Liriodendron tulipifera	2,400
Willow Oak	Quercus phellos	2,000
White Oak	Quercus alba	1,800
Northern Red Oak	Quercus rubra	1,800
River Birch	Betula nigra	1,400
Green Ash	Fraxinus pennsylvanica	1,200
Total		

Table 6a. Pequod Vegetation Plot Mitigation Success Summary (MY3)

Wetland/Stream Vegetation Totals						
(per acre)						
Plot \#	Planted Stems/Acre	Volunteer Stems/Acre	Total Stems/Acre	Success Criteria Met?	Planted Stem Height (ft)	
$\mathbf{1}$	567	40	607	Yes	7.1	
$\mathbf{2}$	728	931	1659	Yes	4.4	
$\mathbf{3}$	567	243	809	Yes	4.8	
$\mathbf{4}$	769	809	1578	Yes	6.3	
$\mathbf{5}$	486	40	526	Yes	3.3	
$\mathbf{6}$	971	81	1052	Yes	4.6	
$\mathbf{7}$	647	40	688	Yes	3.5	
$\mathbf{8}$	607	688	1295	Yes	3.4	
$\mathbf{9}$	769	769	1538	Yes	3.5	
$\mathbf{1 0}$	567	0	567	Yes	3.2	
$\mathbf{1 1}$	364	1133	1497	Yes	4.8	
$\mathbf{1 2}$	567	971	1538	Yes	4.2	
$\mathbf{1 3}$	607	81	688	Yes	3.6	
$\mathbf{1 4}$	809	121	931	Yes	4.8	
$\mathbf{1 5}$	567	4249	4816	Yes	5.2	
$\mathbf{1 6}$	688	1255	1942	Yes	2.7	
$\mathbf{1 7}$	769	40	809	Yes	2.3	
Project Avg	$\mathbf{6 5 0}$	$\mathbf{6 7 6}$	$\mathbf{1 3 2 6}$	Yes	$\mathbf{4 . 2}$	

Table 7a. Pequod Stem Count Total and Planted by Plot Species (MY3)

Table 5b. Schmid Creek Planted Species Summary

Common Name	Scientific Name	Total Ste ms Planted		
Water Oak	Quercus nigra	2,700		
Sycamore	Platanus occidentalis	2,800		
Tuliptree	Liriodendron tulipifera	1,600		
Willow Oak	Quercus phellos	1,500		
White Oak	Quercus alba	1,500		
Northern Red Oak	Quercus rubra	1,200		
River Birch	Betula nigra	1,000		
Green Ash	Fraxinus pennsylvanica	800		
Total				13,100

Table 6b. Schmid Vegetation Plot Mitigation Success Summary (MY3)

Plot\#	Planted Stems/Acre	Volunteer Stems/Acre	Total Stems/Acre	Success Criteria Met?	Average Planted Stem Height (ft)
$\mathbf{1 8}$	607	0	607	Yes	2.2
$\mathbf{1 9}$	809	40	850	Yes	3.4
$\mathbf{2 0}$	728	0	728	Yes	2.9
$\mathbf{2 1}$	809	0	809	Yes	4.7
$\mathbf{2 2}$	445	0	445	Yes	2.3
$\mathbf{2 3}$	1133	0	1133	Yes	2.0
$\mathbf{2 4}$	890	0	890	Yes	2.5
$\mathbf{2 5}$	850	$\mathbf{2 6 7 1}$	3521	Yes	2.3
Project Avg	$\mathbf{7 8 4}$	$\mathbf{3 3 9}$	$\mathbf{1 1 2 3}$	Yes	$\mathbf{2 . 8}$

Table 7b. Schmid Creek Stem Count Total and Planted by Plot Species (MY3)

Schmid Creek			Current Plot Data (MY3 2021)																								Annual Means															
	Common Name	Species Type	100046-01-0018			100046-01-0019			100046-01-0020			100046-01-0021			100046-01-0022			100046-01-0023			100046-01-0024			100046-01-0025			MY3 (2021)			MY2 (2020)			MY1 (2019)				MYO(2019)					
Scientific Name			Pnots	P-all	T	Pols P-an T			Pnots ${ }^{\text {P }}$	P-all	T	Pnots P-all $^{\text {a }}$			PnoLS	P-all	T	Pnots	P-all	T	Pnots P-all ${ }^{\text {T }}$			Pnots P-all ${ }^{\text {T }}$ T			Pnots ${ }^{\text {P-all }}$ T			Pnots P-all ${ }^{\text {T }}$			Pnots P-all ${ }^{\text {T }}$			Pnots P-all ${ }^{\text {T }}$						
Betula nigra	River Birch	Tree					1		4	4	4	6	6					4	4	4							15	15	15	15	15	15	16	16	16		29	29	29			
Fraxinus pennsylvanica	Green Ash	Tree					4					2	2					2	2		3	3		2	2	68	14	14	81	13	13	44	14	14	24		14	14	14			
Liriodendron tulipifera	Tulip Poplar	Tree	2	2															2			1		1				8		9	9		24	24	24		36	36	36			
Platanus occidentalis	Sycamore	Tree	4	4		3	3		7	7		1	1		2	2		6	66	6	4	4	4	1	1	1	28	28	28	30	30	30	30	30	30		45	45	545			
Quercus	Oak	Shrub Tree																																			38	38	38			
Quercus alba	White Oak	Tree	5	5		4	4	4				5	5					3	3	3				3	3	3	20	20	20	20	20	20	23	23	23		2		2			
Quercus nigra	Water Oak	Tree				1	1		1	1						2											4	4	4	4	4		4	4			8	8	8			
Quercus phellos	Willow Oak	Tree		2		2	2		4			4	4			5		10	10	10	10	10	10	4	4		41	41	41	41	41	41	44	44	44		29	29	29			
Quercus rubra	Northern Red Oak	Tree		2		4	4		2	2			2									4	4	10	10	10	25	25	25	26	26	26	26	26	26		12	12	2.12			
		Stem count	15)	15	15	20	20	21	18	18	18	20	20	20	11)	11	11	28	28	28	22	22	22	21	21	87	155	155	222	158	158	189	181	181	191		213	213	13 213			
		size (ares)	1			1			1			1			1			1			1			1			8			80.20			80.20			8						
		size (ACRES)	0.02			0.02			0.02			0.02			0.02			0.02			0.02			0.02			0.20						$8{ }^{0.20} 8$				0.20					
		Species count											6									5		6	6		8	8		0.2088										9		9
Stems per ACRE			607	607	607	809	809	850	728	728	728	809	809	809	445	445	445	1133	1133	1133	890	- 890	890	850	850	3521	784	784	1123	799	799	956	916	916	966		1077	1077	71077			

Table 5c. Sunbeam Planted Species Summary

Common Name	Scientific Name	Total Ste ms Planted
Water Oak	Quercus nigra	2,100
Sycamore	Platanus occidentalis	1,900
Tuliptree	Liriodendron tulipifera	1,000
Willow Oak	Quercus phellos	1,000
White Oak	Quercus alba	800
Northern Red Oak	Quercus rubra	800
River Birch	Betula nigra	600
Green Ash	Fraxinus pennsylvanica	600
Total		

Table 6c. Sunbeam Vegetation Plot Mitigation Success Summary (MY3)

Plot\#	Planted Stems/Acre	Volunteer Stems/Acre	Total Stems/Acre	Success Criteria Met?	Average Planted Stem Height (ft)
$\mathbf{2 6}$	647	81	728	Yes	5.3
$\mathbf{2 7}$	445	0	445	Yes	9.7
$\mathbf{2 8}$	728	0	728	Yes	9.4
$\mathbf{2 9}$	607	121	728	Yes	5.3
$\mathbf{3 0}$	809	0	809	Yes	6.1
$\mathbf{3 1}$	809	121	931	Yes	8.2
$\mathbf{3 2}$	567	162	728	Yes	5.8
$\mathbf{3 3}$	809	40	850	Yes	5.2
$\mathbf{3 4}$	688	81	769	Yes	4.3
$\mathbf{3 5}$	486	0	486	Yes	2.5
$\mathbf{3 6}$	567	1052	1619	Yes	4.0
$\mathbf{3 7}$	850	0	850	Yes	2.0
Project Avg	$\mathbf{6 6 8}$	$\mathbf{1 3 8}$	$\mathbf{8 0 6}$	Yes	$\mathbf{5 . 6}$

Table 7c. Sunbeam Stem Count Total and Planted by Plot Species (MY3)

Appendix C

Vegetation Monitoring Plot Photos

Pequod Vegetation Monitoring Plot Photos

Vegetation Plot 1 (10/20/21)

Vegetation Plot 3 (10/20/21)

Vegetation Plot 5 (10/20/21)

Vegetation Plot 2 (10/20/21)

Vegetation Plot 4 (10/20/21)

Vegetation Plot 6 (10/20/21)

Pequod Vegetation Monitoring Plot Photos

Vegetation Plot 7 (10/20/21)

Vegetation Plot 9 (10/20/21)

Vegetation Plot 11 (10/20/21)

Vegetation Plot 8 (10/20/21)

Vegetation Plot 10 (10/20/21)

Vegetation Plot 12 (10/20/21)

Pequod Vegetation Monitoring Plot Photos

Vegetation Plot 13 (10/20/21)

Vegetation Plot 15 (10/20/21)

Vegetation Plot 17 (10/20/21)

Schmid Creek Vegetation Monitoring Plot Photos

Vegetation Plot 18 (10/7/2021)

Vegetation Plot 20 (10/7/2021)

Vegetation Plot 22 (10/7/2021)

Vegetation Plot 19 (10/7/2021)

Vegetation Plot 21 (10/7/2021)

Vegetation Plot 23 (10/7/2021)

Schmid Creek Vegetation Monitoring Plot Photos

Vegetation Plot 24 (10/7/2021)

Vegetation Plot 25 (10/7/2021)

Sunbeam Vegetation Monitoring Plot Photos

Vegetation Plot 26 (10/12/2021)

Vegetation Plot 28 (10/12/2021)

Vegetation Plot 30 (10/12/2021)

Vegetation Plot 27 (10/12/2021)

Vegetation Plot 29 (10/12/2021)

Vegetation Plot 31 (10/12/2021)

Sunbeam Vegetation Monitoring Plot Photos

Vegetation Plot 32 (10/12/2021)

Vegetation Plot 34 (10/12/2021)

Vegetation Plot 36 (10/12/2021)

Vegetation Plot 33 (10/12/2021)

Vegetation Plot 35 (10/12/2021)

Vegetation Plot 37 (10/12/2021)

